1,838 research outputs found

    An Overview of a Grid Architecture for Scientific Computing

    Full text link
    This document gives an overview of a Grid testbed architecture proposal for the NorduGrid project. The aim of the project is to establish an inter-Nordic testbed facility for implementation of wide area computing and data handling. The architecture is supposed to define a Grid system suitable for solving data intensive problems at the Large Hadron Collider at CERN. We present the various architecture components needed for such a system. After that we go on to give a description of the dynamics by showing the task flow

    The NorduGrid architecture and tools

    Full text link
    The NorduGrid project designed a Grid architecture with the primary goal to meet the requirements of production tasks of the LHC experiments. While it is meant to be a rather generic Grid system, it puts emphasis on batch processing suitable for problems encountered in High Energy Physics. The NorduGrid architecture implementation uses the \globus{} as the foundation for various components, developed by the project. While introducing new services, the NorduGrid does not modify the Globus tools, such that the two can eventually co-exist. The NorduGrid topology is decentralized, avoiding a single point of failure. The NorduGrid architecture is thus a light-weight, non-invasive and dynamic one, while robust and scalable, capable of meeting most challenging tasks of High Energy Physics.Comment: Talk from the 2003 Computing in High Energy Physics and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 9 pages,LaTeX, 4 figures. PSN MOAT00

    Atlas Data-Challenge 1 on NorduGrid

    Full text link
    The first LHC application ever to be executed in a computational Grid environment is the so-called ATLAS Data-Challenge 1, more specifically, the part assigned to the Scandinavian members of the ATLAS Collaboration. Taking advantage of the NorduGrid testbed and tools, physicists from Denmark, Norway and Sweden were able to participate in the overall exercise starting in July 2002 and continuing through the rest of 2002 and the first part of 2003 using solely the NorduGrid environment. This allowed to distribute input data over a wide area, and rely on the NorduGrid resource discovery mechanism to find an optimal cluster for job submission. During the whole Data-Challenge 1, more than 2 TB of input data was processed and more than 2.5 TB of output data was produced by more than 4750 Grid jobs.Comment: Talk from the 2003 Computing in High Energy Physics and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 7 pages, 3 ps figure

    Treatment Restrictions and the Risk of Death in Patients With Ischemic Stroke or Intracerebral Hemorrhage

    Get PDF
    BACKGROUND AND PURPOSE: Do-not-resuscitate (DNR) orders in the first 24 hours after intracerebral hemorrhage have been associated with an increased risk of early death. This relationship is less certain for ischemic stroke. We assessed the relation between treatment restrictions and mortality in patients with ischemic stroke and in patients with intracerebral hemorrhage. We focused on the timing of treatment restrictions after admission and the type of treatment restriction (DNR order versus more restrictive care). METHODS: We retrospectively assessed demographic and clinical data, timing and type of treatment restrictions, and vital status at 3 months for 622 consecutive stroke patients primarily admitted to a Dutch university hospital. We used a Cox regression model, with adjustment for age, sex, comorbidities, and stroke type and severity. RESULTS: Treatment restrictions were installed in 226 (36%) patients, more frequently after intracerebral hemorrhage (51%) than after ischemic stroke (32%). In 187 patients (83%), these were installed in the first 24 hours. Treatment restrictions installed within the first 24 hours after hospital admission and those installed later were independently associated with death at 90 days (adjusted hazard ratios, 5.41 [95% CI, 3.17-9.22] and 5.36 [95% CI, 2.20-13.05], respectively). Statistically significant associations were also found in patients with ischemic stroke and in patients with just an early DNR order. In those who died, the median time between a DNR order and death was 520 hours (interquartile range, 53-737). CONCLUSIONS: The strong relation between treatment restrictions (including DNR orders) and death and the long median time between a DNR order and death suggest that this relation may, in part, be causal, possibly due to an overall lack of aggressive care

    Gauss-Bonnet brane-world cosmology without Z2Z_{2}-symmetry

    Full text link
    We consider a single 3-brane situated between two bulk spacetimes that posses the same cosmological constant, but whose metrics do not posses a Z2Z_{2}-symmetry. On each side of the brane, the bulk is a solution to Gauss-Bonnet gravity. This asymmetry modifies junction conditions, and so new terms arise in the Friedmann equation. If these terms become dominant, these behave cosmological constant at early times for some case, and might remove the initial singularity for other case. However, we show that these new terms can not become dominant ones under usual conditions when our brane is outside an event horizon. We also show that any brane-world scenarios of this type revert to a Z2Z_{2}-symmetric form at late times, and hence rule out certain proposed scenarios.Comment: 8 pages, 3 figures; Minor typos corrected. References added. V3: Numerical errors are corrected. Fig.1 and Fig.3 are replaced. V4: published versio

    Asymmetric Swiss-cheese brane-worlds

    Full text link
    We study a brane-world cosmological scenario with local inhomogeneities represented by black holes. The brane is asymmetrically embedded into the bulk. The black strings/cigars penetrating the Friedmann brane generate a Swiss-cheese type structure. This universe forever expands and decelerates, as its general relativistic analogue. The evolution of the cosmological fluid however can proceed along four branches, two allowed to have positive energy density, one of them having the symmetric embedding limit. On this branch a future pressure singularity can arise for either (a) a difference in the cosmological constants of the cosmological and black hole brane regions (b) a difference in the left and right bulk cosmological constants. While the behaviour (a) can be avoided by a redefinition of the fluid variables, (b) establishes a critical value of the asymmetry over which the pressure singularity occurs. We introduce the pressure singularity censorship which bounds the degree of asymmetry in the bulk cosmological constant. We also show as a model independent generic feature that the asymmetry source term due to the bulk cosmological constant increases in the early universe. In order to obey the nucleosynthesis constraints, the brane tension should be constrained therefore both from below and from above. With the maximal degree of asymmetry obeying the pressure singularity censorship, the higher limit is 10 times the lower limit. The degree of asymmetry allowed by present cosmological observations is however much less, pushing the upper limit to infinity.Comment: v2: considerably expanded, 19 pages, 8 figures, many new references. Pressure singularity censorship introduced, strict limits on the possible degree of asymmetry derived. v3: model independent analysis shows that the asymmetry bounds the brane tension from above. Limits on the maximal tension set. Version published in JCA

    Double-Stranded RNA Attenuates the Barrier Function of Human Pulmonary Artery Endothelial Cells

    Get PDF
    Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes

    Расчет гашения обратного напряжения в импульсной схеме

    Get PDF
    Grid and e-science infrastructure interoperability is an increasing demand for Grid applications but interoperability based on common open standards adopted by Grid middle-wares are only starting to emerge on Grid infrastructures and are not broadly provided today. In earlier work we have shown how open standards can be improved by lessons learned from cross-Grid applications that require access to both, High Throughput Computing (HTC) resources as well as High Performance Computing (HPC) resources. This paper provides more insights in several concepts with a particular focus on effectively describing Grid job descriptions in order to satisfy the demands of e-scientists and their cross-Grid applications. Based on lessons learned over years gained with interoperability setups between production Grids such as EGEE, DEISA, and NorduGrid, we illustrate how common open Grid standards (i.e. JSDL and GLUE2) can take cross-Grid application experience into account
    corecore